

CERTIFICATE OF ACCREDITATION

The ANSI National Accreditation Board

Hereby attests that

APREL, Inc. 303 Terry Fox Drive, Suite 102 Ottawa (Kanata), Ontario Canada, K2K 3J1

Fulfills the requirements of

ISO/IEC 17025:2017

and

US Federal Communication Commission (FCC) EMC and Telecommunications (EC&T) Testing Designation Program

and

Recognition of Telecommunications Testing - Innovation, Science, and Economic Development (ISED) Canada

In the field of

TESTING

This certificate is valid only when accompanied by a current scope of accreditation document. The current scope of accreditation can be verified at <u>www.anab.org</u>

Jason Stine, Vice President

Expiry Date: 01 October 2025 Certificate Number: AT-1810

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communiqué dated April 2017).

SCOPE OF ACCREDITATION TO ISO/IEC 17025:2017

U.S. Federal Communication Commission (FCC) EMC and Telecommunications (EC&T) Testing Designation Program²

Recognition of Telecommunications Testing - Innovation, Science, and Economic Development (ISED) Canada³

APREL, Inc.

303 Terry Fox Drive, Suite 102 Ottawa (Kanata), Ontario Canada, K2K 3J1 Stuart Nicol 613-435-8300

TESTING

Valid to: October 1,2025

Certificate Number: AT-1810

Testing performed in support of FCC approval procedures for Certification²

Type of Device Examples	Scope of Accreditation	Supporting FCC Guidance	Comments / Maximum Frequency Tested
RF Exposure Devices subject to SAR requirements	IEEE 62209-1528:2020 IEEE Std 1528™-2013	KDB Publication 865664 KDB Publication 447498	6 GHz

Testing to Meet the Requirements for Recognition of Telecommunications Testing – Innovation, Science, and Economic Development (ISED) Canada ³

Test Method (Standard)	Issue, Date, Amendment	Test Specification(s)	Comments
RSS-102	Issue 6, December 2023	Radio Frequency (RF) Exposure compliance of Radiocommunications Apparatus (All Frequency Bands)	RF Exposure (RF Exp) – Measurement (3kHz to 90GHz)
RSS- 102.IPD.MEAS	Issue 1, December 2023	Measurement Procedure for Assessing Incident Power Density (IPD) Compliance in Accordance with RSS-102	Specific Absorption Rate (SAR) -Measurement (100kHz to 6GHz)
RSS- 102.SAR.MEAS	Issue 1, December 2023	Measurement Procedure for Assessing Specific Absorption Rate (SAR) Compliance in Accordance with RSS-102	Localized Power Density (LPD) – Measurement (3kHz to 90GHz)

Version 012 Issued: August 12, 2024

www.anab.org

Electromagnetic Compatibility

Test Method	Test Specification(s)	Range	Comments
CENELEC EN 50360:2018; IEEE 62209-1528:2020; FCC OET Bulletin 65 (Ed 97-01), KDB 447498DO3 ISED Canada IEC TR 63170 IEEE/IEC 63195-1:2022	Wireless Communications Devices (Examples): Two Way Radios (Portable); Portable Phones (including Cellular, Licensed Non- Broadcast and PCS); WiMax; Bluetooth; Handheld Terminals; etc.	Electromagnetic Exposure (SAR) (4 to 6 000) MHz (0.01 to 100) W/kg (Power Density) between 6 and 90 GHz	ALSAS IOU System & APREL RFISight System (Power Density) Signal Generator equivalent to HP 83640B Signal Generator equivalent to S10MS (75-110 GHz) ENA equivalent to Keysight ENA E5063A Spectrum Analyzer Equivalent to PXA N9030B; Waveguide Harmonic Mixer Equivalent to Keysight M1971E, Keysight N5173B Signal Generator
IEC 61967:2001, part 1 only IEC 61967:2002, part 6 only Integrated Circuits Measurement of Electromagnetic Emissions 150 kHz to 1 GHz	Integrated Circuits	Electromagnetic Emissions 150 kHz to 1 GHz 2 kHz to 95 GHz	APREL EM Isight Spectrum Analyzer Equivalent to Keysight PXA MY57140772 Keysight PNA US58420754 Signal Generator equivalent to HP 83640B, Keysight N5173B Signal Generator

Notes:

1. Servicing the telecommunication, and commercial industries. The above tests can be performed for various customer supplied test requirements, using the above listed test methods.

 Meets the requirements of the FCC equipment authorization program as detailed in 47 CFR Part 2 Subpart J as defined in the ANAB SR 2412 U.S. Federal Communication Commission (FCC) EMC and Telecommunications (EC&T) Testing Designation Accreditation Program. Recognition by the FCC can be confirmed by visiting their website <u>https://apps.fcc.gov/oetcf/eas/reports/TestFirmSearch.cfm</u>.

 Testing performed to meet the Requirements for Recognition of Telecommunications Testing – Innovation, Science, and Economic Development (ISED) Canada. Recognition by ISED can be confirmed by visiting their website https://www.ic.gc.ca/eic/site/mra-arm.nsf/eng/h_nj00091.html.

4. This scope is formatted as part of a single document including Certificate of Accreditation No. AT-1810.

Jason Stine, Vice President

www.anab.org